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Abstract

We prove a rate of convergence theorem for approximations to certain integrals over codimension one manifolds in Rn.
The type of manifold involved here is defined by the zero level set of a smooth mapping u : Rn 7!R. Our approximations are
based on the two finite difference methods for discretizing delta functions presented in [16]. We included a convergence
proof in that paper, but only proved rates of convergence in some greatly simplified situations. Numerical experiments
indicated that our two methods were at least first and second order accurate, respectively. In this note we prove those
empirical convergence rates for the two algorithms under fairly general hypotheses.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Like [16], this note concerns the problem of approximating the integral
0021-9

doi:10.

* Tel
E-m

UR
I :¼
Z

C
f ð~xÞds; ð1Þ
where~x ¼ ðx1; . . . ; xnÞ 2 Rn, and C is a compact manifold of codimension one defined by the zero level set of a
function uð~xÞ. The data f and u are only defined at the discrete set of mesh points of a regular grid. It is natural
in this situation to replace the integral on the right side of (1) by the integral
Z

Rn
f ð~xÞdðuð~xÞÞkruð~xÞkd~x; ð2Þ
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where d(�) denotes the Dirac delta function. Ref. [3] contains a proof that the integrals appearing in (1) and (2)
are equal. The problem of approximating the integral I thus amounts to producing a discrete version of the
delta function dðuð~xÞÞ.

In level set applications [8], f and u are often only defined in a narrow band containing C. Even if u is
defined more globally, it will often be a signed distance function, and will be smooth near C, but may have
cusps at some finite distance away.

We assume that for some a > 0, u is defined and smooth on a band of the form Ba ¼ f~x : juð~xÞj < ag sur-
rounding C. We further assume that f is also defined and smooth on Ba, and that for some r > 0, k$uk > r for
~x 2 Ba.

Finally, we assume that one component of Rn n C is a bounded domain X. See Fig. 1. Without loss of gen-
erality, we take u > 0 in X \ Ba, i.e., u is positive (wherever defined) in the region enclosed by C. With this
convention, the unit outward (from X) normal vector ~n satisfies ~n ¼ �ru=kruk.

For our analysis (but not for our algorithms), we will require an extended version ~f of the function f. To
construct ~f , we start with a C1 function l : R ´ [0, 1] such that l(r) = 1 for jrj 6 a/2 and l(r) = 0 for jrjP a.
Let qð~xÞ ¼ lðuð~xÞÞ, and define
~f ð~xÞ ¼
qð~xÞf ð~xÞ ~x 2 Ba

0 ~x 62 Ba:

�
ð3Þ
The extension ~f is as smooth as f, it is defined on all of Rn, and it has compact support. It is clear that quan-
tities like ~f u=kruk can also be understood to be smooth (and compactly supported) on all of Rn.

Let f~xk ¼ ðx1
k1
; . . . xn

kn
Þ : k :¼ ðk1; . . . ; knÞ 2 Zng denote the set of mesh points of the regular grid. We assume

that the mesh spacing h is the same in all directions, xi
ki
¼ kih; ki 2 Z. Let f~e1; . . . ;~eng be the standard basis for

Rn. If vk ¼ vð~xkÞ is a function defined at each grid point~xk, we define the second order accurate discrete gra-
dient operator $h via
rhvk ¼
Xn

m¼1

vð~xk þ h~emÞ � vð~xk � h~emÞ
2h

� �
~em: ð4Þ
It is easy to see that if ~wk vanishes for max {jk1j, . . . , jknj} sufficiently large, then the following summation by
parts formula holds:
X

k2Zn

rhvk �~wk ¼ �
X
k2Zn

vkrh �~wk: ð5Þ
Let H(�) denote the Heaviside function
HðzÞ ¼
0; z < 0;

1; z > 0;

�
ð6Þ
and define IðzÞ ¼
R z

0
HðfÞdf. Note that
rIðuð~xÞÞ ¼ Hðuð~xÞÞruð~xÞ;
rHðuð~xÞÞ ¼ dðuð~xÞÞruð~xÞ:

ð7Þ
u<0
Ω

Γ=∂ Ω

u>0

u=0

Fig. 1. A level set C � R2 defined by uð~xÞ ¼ 0.
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The second of these relationships is purely formal; it relies on the fact that H0(z) = d(z) in the sense of distri-
butions. By taking the inner product with $u, we get the relationships
HðuÞ ¼ rIðuÞ � ru=kruk2
;

dðuÞ ¼ rHðuÞ � ru=kruk2
:

ð8Þ
Before continuing, we emphasize that our convergence proof does not rely on the formal calculations that
yield (8); they are included solely for motivation. Our finite difference approximations are simply discretiza-
tions of (8).
FDM1 :

d1;h
k ¼ rhHðukÞ � rhuk=krhukk2

:
ð9Þ

FDM2 :

H 1;h
k ¼ rhIðukÞ � rhuk=krhukk2

;

d2;h
k ¼ rhH 1;h

k � rhuk=krhukk2
:

ð10Þ
Both of these approximate delta functions vanish outside of a narrow band surrounding C. Specifically,
dq;h

k ¼ 0 if dð~xk;CÞ > qh. This narrow support is a desirable property in practical applications.

Remark 1.1. It is possible to build more accurate algorithms (FDMq,q > 2) by starting with higher order
primitives of H(�), and then differencing as many times as necessary. The second order $h must be replaced by
a more accurate discrete gradient, but this is straightforward. Unfortunately, for q > 2 the support of the
discrete delta function constructed in this way expands to fill up all of X. Since we are interested in keeping the
support of our delta functions narrow, we only consider q = 1,2 here.

Once we have computed the approximate delta function dq;h
k , we approximate the integral (2) via
I q;h ¼ hn
X
k2Zn

dq;h
k f ð~xkÞkrhukk; q ¼ 1; 2: ð11Þ
FDM1 and FDM2 are the algorithms that we referred to as Method 1 and Method 2 in [16]. In that paper, we
found by numerical experiments that FDM1 was generally first order accurate, and if we smoothed H(z) by a
small amount, it gave second order accuracy on certain problems. Our numerical experiments showed that
FDM2 was second order accurate in general. Note that in the previous paper, we combined the two stages
of FDM2 into a single formula. The performance of the two-stage algorithm of this note turns out to be sim-
ilar to the one-step version in [16]. The two-stage version is somewhat easier to implement and analyze.

The problem of discretizing a codimension one delta function on a regular mesh occurs naturally in appli-
cations of the level set method [8,9,12]. This topic has attracted some attention recently due to the results of
Engquist, Tornberg, and Tsai. Tornberg and Engquist showed in [14,15] that seemingly reasonable discretiza-
tions may not converge to the correct value of the integral I . Following this, Engquist et al. [4] constructed
first and second order accurate approximate delta functions that overcome this difficulty. Next, Smereka [13]
devised first and second order discrete delta functions. His approximations are based on a technique due to
Mayo [6] for solving elliptic equations on irregular regions. Let us also mention that Wen [19] has constructed
very accurate discrete one-dimensional delta functions.

Gibou and Min [7] have also proposed a method for approximating
R

C f ð~xÞds. Their approach is more geo-
metric in nature, and does not require any discretization of delta functions.

In the special case where n = 2, and f ð~xÞ � 1, Candela and Marquina [2] have proposed a parameter to
measure the complexity of C, which relates to the accuracy of approximating the integral I .

There has also been some work related to approximating integrals involving delta functions supported on
sets of higher codimension [5,17,18]. The case of full codimension (where the delta function is supported on a
discrete set of points in Rn) is important in level set methods for modeling high frequency wave propagation
[5,11].
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Although there is substantial numerical evidence that the second order algorithms of [4,13,16] all converge
at a rate of O(h2), until recently there was no proof of this. Very recently Beale [1] provided a simple proof that
Smereka’s algorithm converges at a rate of O(h2).

In this note, we prove that the algorithm FDM1 converges at a rate of O(h), and that FDM2 converges at a
rate of O(h2).

2. Convergence

We start by defining
F 1ð~xÞ ¼ �r � ð~f ð~xÞru=krukÞ;
F 2ð~xÞ ¼ �r � ðF 1ð~xÞru=kruk2Þ:

ð12Þ
Lemma 2.1. If f 2 C1(Ba), u 2 C2(Ba), then
Z
Rn

HðuÞF 1ð~xÞd~x ¼
Z

C
f ð~xÞds: ð13Þ
If f 2 C2(Ba), u 2 C3(Ba), then
Z
Rn

IðuÞF 2ð~xÞd~x ¼
Z

C
f ð~xÞds: ð14Þ
Proof. For (14), we integrate by parts:
Z
Rn

IðuÞF 2ð~xÞd~x ¼ �
Z

Rn
IðuÞr � ðF 1ð~xÞru=kruk2Þd~x

¼ �
Z

Rn
r � ðIðuÞF 1ð~xÞru=kruk2Þd~xþ

Z
Rn
rIðuÞ � ðF 1ð~xÞru=kruk2Þd~x

¼
Z

Rn
HðuÞru � ðF 1ð~xÞru=kruk2Þd~x ¼

Z
Rn

HðuÞF 1ð~xÞd~x: ð15Þ
Here, we have used the fact that the first integral on the second line vanishes; this results from the fact that the
quantity in parentheses is compactly supported.

Both (13) and (14) will be established as soon as we verify (13). For this we use the divergence theorem:
Z
Rn

HðuÞF 1ð~xÞd~x ¼ �
Z

Rn
HðuÞr � ð~f ð~xÞru=krukÞd~x ¼ �

Z
X
r � ð~f ð~xÞru=krukÞd~x

¼ �
Z

C
ð~f ð~xÞru=krukÞ �~nds ¼

Z
C

f ð~xÞds; ð16Þ
and the proof is complete. h

We can now state our convergence rate theorem.

Theorem 2.1. If f 2 C3(Ba), u 2 C4(Ba), then I 1;h !
R

C f ð~xÞds as h ? 0, and
I 1;h ¼
Z

C
f ð~xÞdsþOðhÞ: ð17Þ
If f 2 C4(Ba), u 2 C5(Ba), then I 2;h !
R

C f ð~xÞds as h ? 0, and
I 2;h ¼
Z

C
f ð~xÞdsþOðh2Þ: ð18Þ
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Proof. We first prove the assertion concerning I 2;h. Define
F 1;h
k ¼ �rh � ð~f ð~xkÞrhuk=krhukkÞ;

F 2;h
k ¼ �rh � ðF 1;h

k rhuk=krhukk2Þ:
ð19Þ
Starting from the definitions,
I 2;h ¼ hn
X
k2Zn

d2;h
k

~f ð~xkÞkrhukk ¼ hn
X
k2Zn

ðrhH 1;h
k � rhuk=krhukk2Þ~f ð~xkÞkrhukk: ð20Þ
Here we have replaced f by ~f . This replacement is valid for sufficiently small h due to the fact that d2;h
k is zero if

~xk is more than an O(h) distance from C. Summing this last quantity by parts using (5), and then recalling (19)
yields
I 2;h ¼ hn
X
k2Zn

H 1;h
k F 1;h

k : ð21Þ
We sum by parts again, arriving at
I 2;h ¼ hn
X
k2Zn

IðukÞF 2;h
k : ð22Þ
Due to the regularity assumptions about f and u;F 2;h
k ¼ F 2ð~xkÞ þOðh2Þ. Also, note that the number of indices

k where either F 2;h
k or F 2ð~xkÞ is nonzero is O(h�n). With these observations in mind, we have
I 2;h ¼ hn
X
k2Zn

IðukÞF 2ð~xkÞ þOðh2Þ: ð23Þ
Let Rk denote the grid cube centered at ~xk whose edges all have length h. Let K denote the set of indices k

where IðuÞF 2ð~xÞ is not identically zero on Rk. In view of (23), Lemma 2.1, and the fact that
Z
Rn

IðuÞF 2ð~xÞd~x ¼
X
k2K

Z
Rk

IðuÞF 2ð~xÞd~x; ð24Þ
the proof of (18) will be complete if we can show that
hn
X
k2K

IðukÞF 2ð~xkÞ ¼
X
k2K

Z
Rk

IðuÞF 2ð~xÞd~xþOðh2Þ: ð25Þ
Let K1 denote the set of indices k 2 K where Rk does not intersect C, and let K2 = KnK1. For
k 2 K1; IðuÞF 2ð~xÞ 2 C2ðRkÞ. The multi-dimensional version of the midpoint rule yields
hnIðukÞF 2ð~xkÞ ¼
Z

Rk

IðuÞF 2ð~xÞd~xþOðhnþ2Þ; k 2 K1: ð26Þ
For k 2 K2, the regularity is lower: IðuÞF 2ð~xÞ 2 LipðRkÞ. Thus,
hnIðukÞF 2ð~xkÞ ¼
Z

Rk

IðuÞF 2ð~xÞd~xþOðhnþ1Þ; k 2 K2: ð27Þ
Since F 2ð~xÞ has compact support, the number of indices k 2 K1 is O(h�n). The number of indices k 2 K2 is
O(h1�n); this is due to the fact that C is a compact n � 1-dimensional manifold. Combining these observations
with (26) and (27), we have (25), and the proof of (18) is complete.

The proof of (17) is similar. After a single summation by parts, and then replacing F 1;h
k by F 1ð~xkÞ, the proof

reduces to showing that
hn
X
k2K

HðukÞF 1ð~xkÞ ¼
X
k2K

Z
Rk

HðuÞF 1ð~xÞd~xþOðhÞ: ð28Þ
This time K is defined in terms of HðuÞF 1ð~xÞ. The analysis for k 2 K1 is basically the same as in the proof of
(18), but for k 2 K2, we can only guarantee that HðuÞF 1ð~xÞ is bounded, and so



Table 1
Numerical example–integral of curvature of ellipse in R2

h FDM1 (256) FDM2 (16)

Error Rate Error Rate

.32 3.30e�3 3.30e�3

.16 1.07e�3 1.6 7.91e�4 2.1

.08 3.77e�4 1.5 1.96e�4 2.0

.04 9.63e�5 2.0 4.86e�5 2.0

.02 3.47e�5 1.5 1.22e�5 2.0

.01 1.61e�5 1.1 3.04e�6 2.0

.005 5.09e�6 1.7 7.56e�7 2.0
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hnHðukÞF 1ð~xkÞ ¼
Z

Rk

HðuÞF 1ð~xÞd~xþOðhnÞ; k 2 K2: ð29Þ
The remainder of the proof of (17) is essentially the same as that of (18), the main ingredients being Lemma 2.1
and the fact that the sizes of the sets K1 and K2 are O(h�n) and O(h1�n) respectively. h
3. A numerical example

The previous paper [16] contains a number of computational experiments, which we need not repeat here.
However, since we worked with a slightly different version of FDM2 in that paper, we provide one numerical
example by way of indicating that the two versions give similar results. For this purpose we use Example 4 of
[16]. C is the ellipse x2/9 + y2/4 = 1, and f(x,y) = $ � ($u(x,y)/k$u(x,y)k) where u(x,y) = 1 � (x2/9 + y2/4), so
that
I ¼
Z

C
jðx; yÞds ¼ 2p; ð30Þ
where f(x,y) = j(x,y) is the curvature of C. Integrals of curvature like (30) arise in level set applications [10].
We use centered differences to approximate j(xj,yk) using the grid-defined values of u, the idea being to sim-
ulate how the method would be used in applications. Also, we rotate the mesh by 45� to reduce possible error
cancellation due to symmetry. Table 1 demonstrates results that are similar to those obtained for this example
in [16]. As expected, FDM2 is converging at a rate of O(h2). FDM1 seems to be converging at a rate of at least
O(h). For FDM1 we averaged the absolute values of the relative errors over 256 small random grid shifts,
while for FDM2, we averaged over only 16. This is a reflection of the fact that FDM2 is much more stable
under small grid shifts. FDM1 can be stabilized somewhat by smoothing the Heaviside function a small
amount, as we did in [16]. We did not apply any smoothing here.
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